The k-ZIG: flexible modeling for zero-inflated counts.

نویسندگان

  • Souparno Ghosh
  • Alan E Gelfand
  • Kai Zhu
  • James S Clark
چکیده

Many applications involve count data from a process that yields an excess number of zeros. Zero-inflated count models, in particular, zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) models, along with Poisson hurdle models, are commonly used to address this problem. However, these models struggle to explain extreme incidence of zeros (say more than 80%), especially to find important covariates. In fact, the ZIP may struggle even when the proportion is not extreme. To redress this problem we propose the class of k-ZIG models. These models allow more flexible modeling of both the zero-inflation and the nonzero counts, allowing interplay between these two components. We develop the properties of this new class of models, including reparameterization to a natural link function. The models are straightforwardly fitted within a Bayesian framework. The methodology is illustrated with simulated data examples as well as a forest seedling dataset obtained from the USDA Forest Service's Forest Inventory and Analysis program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-inflated negative binomial modeling, efficiency for analysis of length of maternity hospitalization

Background: Mothers’ delivery is one of the most common hospitalization factors throughout the world and it’s modeling can explain distribution and effective factors on rising and decreasing of it. The objective of the present study was a suitable modeling for mother hospitalization time and comparing it with different models. Materials & Methods: Present study is an observational and cross-s...

متن کامل

Semiparametric Inference Based on a Class of Zero-Altered Distributions

In modeling count data collected from manufacturing processes, economic series, disease outbreaks and ecological surveys, there are usually a relatively large or small number of zeros compared to positive counts. Such low or high frequencies of zero counts often require the use of under or over dispersed probability models for the underlying data generating mechanism. The commonly used models s...

متن کامل

Zero-inflated Poisson regression mixture model

Excess zeros and overdispersion are commonly encountered phenomena that limit the use of traditional Poisson regression models for modeling count data. The focus of this paper is on modeling count data in the case that a population has excess zero counts and also consists of several sub-populations in the non-zero counts. The proposed zero-inflated Poisson regression mixture model accounts for ...

متن کامل

Modeling the Number of Attacks in Multiple Sclerosis Patients Using Zero-Inflated Negative Binomial Model

Background and aims: Multiple sclerosis (MS) is an inflammatory disease of the central nervous system.The impact of the number of attacks on the disease is undeniable. The aim of this study was to analyze thenumber of attacks in these patients.Methods: In this descriptive-analytical study, the registered data of 1840 MS patients referred to the MS clinicof Ayatollah Kash...

متن کامل

Adjusting for covariates in zero-inflated gamma and zero-inflated log-normal models for semicontinuous data

Semicontinuous data consist of a combination of a point-mass at zero and a positive skewed distribution. This type of non-negative data distribution is found in data from many fields, but presents unique challenges for analysis. Specifically, these data cannot be analyzed using positive distributions, but distributions that are unbounded are also likely a poor fit. Two-part models incorporate b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 68 3  شماره 

صفحات  -

تاریخ انتشار 2012